Getting Ready for 5th Grade

Mathematics Summer Packet

Ms. Clancy

Directions: Complete all the EvEN numbers to the best of your ability. Use the examples to help you remember how to solve the problems. Have a great See you in September!

Add Dollars and Cents

To add money amounts, line up the decimal points and then add as with whole numbers.

Find the sum.

$\$ 38.37+\$ 41.47$

Step 1

Write the problem on grid paper. Align the digits by place value. Think of pennies as hundredths and dimes as tenths.

Step 2

Add the hundredths.
Regroup 14 hundredths as 1 tenth 4 hundredths. Write 1 in the tenths column.

Then add the tenths.

Step 3

Add the ones and then add the tens. Regroup if necessary.

Write the decimal point and dollar sign.

	\mathbf{T}	$\mathbf{0}$		\mathbf{T}	\mathbf{H}
				1	
$\$$	3	8	.	3	7
+	4	4	.	4	7
$\$$	7	9	.	8	4

So, $\$ 38.37+\$ 41.47=\$ 79.84$.

Find the sum.

1. $\begin{array}{r}\$ 7.81 \\ +\$ 5.09 \\ \hline\end{array}$
2. $\$ 35.06$
$+\$ 51.48$
3. $\$ 5.32$
$+\$ 85.44$
4. $\$ 40.36$
$+\$ 17.45$
5. $\begin{array}{r}\$ 37.60 \\ +\$ 9.04\end{array}$
6. $\$ 80.26$

+ \$19.31

7. $\$ 48.04$
$+\$ 64.65$
8. $\$ 52.66$
$+\$ 50.48$
9. $\$ 8.47$

$+\$ 7.33$

10. $\$ 69.19$

+ \$ 4.95

11. $\$ 24.70$

$+\$ 62.33$

12. $\$ 10.00$
$+\$ 25.75$

Subtract Dollars and Cents

You can count up to find a difference.
Find the difference.
\$48.32 - \$12.50

Step 1 Start with $\$ 12.50$, the amount being subtracted.
Count up until you reach $\$ 48.32$. Record each amount that you use to count up.

Step 2 Add the distances between counts to find the difference.

$$
\$ 0.50+\$ 7.00+\$ 28.00+\$ 0.32=\$ 35.82
$$

So, \$48.32 - \$12.50 = \$35.82.

Find the difference.

1. $\quad \$ 7.22$
$-\$ 4.02$
2. $\$ 36.06$

- \$34.48

3. $\$ 80.00$

- \$35.75

4. $\$ 98.36$

- \$21.15

5. $\$ 47.90$

- \$ 8.34

6. $\$ 60.24$

- \$14.10

7. $\$ 78.54$

- \$ 9.62

8. $\$ 52.00$
\$10.98
9. $\$ 75.32$

- \$24.32

10. $\$ 85.09$

- \$43.56

11. $\$ 90.50$

- \$76.80

12. $\$ 12.13$

- \$ 4.58

Algebra• Order of Operations

The order of operations is a set of rules that gives the order in which calculations are done in an expression.

Use the order of operations to find the value of the expression.

Order of Operations

1. First, perform operations inside the parentheses.
2. Then, multiply and divide from left to right.
3. Last, add and subtract from left to right.
$8+(10 \div 5)-4$

Step 1

First divide.
Think: $10 \div 5=2$
$8+(10 \div 5)-4$
$8+2-4$

Step 2
Then add and subtract from left to right.
Think: $8+2=10$
$8+2-4$
10-4

Step 3
Subtract.
$10-4=6$

So, $8+(10 \div 5)-4=6$.

Write correct if the operations are listed in the correct order. If not correct, write the correct order of operations.

1. $(9 \div 3)$
3) $\times 4$
multiply, divide
2. $15-(8 \div 2)$
subtract, divide
3. $(36+10) \times 3$ multiply, add
4. $(16-4) \div 2+5$ subtract, divide, add

Follow the order of operations to find the value of the expression.
Show each step.
5. $(6 \times 7)+3$
6. $(8+12) \div 4$
7. $(20-5) \times 3+4$
8. $18+6+(16 \div 4)$

Divide by Multiples of Ten

You can use basic facts and patterns to divide by multiples of ten.
Divide. Use a pattern to help.
$6,000 \div 30$

Step 1
Look for a basic fact.
$6,000 \div 30$
Think: $6 \div 3$
The basic fact is $6 \div 3=2$.
$6,000 \div 30 \longleftarrow$ divisor
Think: $6 \div 3=2$, so

$$
60 \div 30=2
$$

Step 3

Now look for a pattern.
Think: If the number of zeros in the dividend increases, the number of zeros in the quotient increases by the same number.
dividend $\rightarrow 60 \div 30=2 \leftarrow$ quotient
$600 \div 30=20$
$6,000 \div 30=200$

So, $6,000 \div 30=200$.

Divide. Use a pattern to help.

1. $1,600 \div 20=$ \qquad
2. $2,400 \div 80=$ \qquad 3. $3,600 \div 40=$
3. $1,200 \div 30=$
4. $8,000 \div 40=$ \qquad 6. $2,000 \div 50=$
5. $6,000 \div 10=$ \qquad 8. $4,900 \div 70=$ \qquad 9. $5,400 \div 60=$ \qquad

Model Division with 2-Digit Divisors

You can use models to divide a whole number by a 2-digit divisor.
Use base-ten blocks to find $143 \div 13$.
Step 1 Use base-ten blocks to model the dividend, 143. Show 143 as 1 hundred $\quad 4$ tens 3 ones.

Remember: Each large square represents 100, each line represents 10, and each small circle represents 1.

Step 2 The divisor is 13 . Divide the blocks equally between 13 groups. Since you cannot share the one-hundred square equally between the 13 groups, first break it into 10 tens. Then you will have 14 tens, altogether. Share the tens equally among 13 groups.
\qquad 3 0000 0000

Step 3 After completing Step 2, you will have \qquad 1 ten and left over. Since you cannot share the 10 equally between the 13 groups, break it into 10 ones. Then you will have 13 ones, altogether. Share the 13 ones equally among the 13 groups.

Each group contains \qquad 1 ten and \qquad 1 one, or 11 . So $143 \div 13=$ \qquad 11.

Use base-ten blocks to divide.

1. $65 \div 5=$
 \qquad

3. $120 \div 8=$ \qquad
4. $168 \div 12=$ \qquad 6. $99 \div 33=$ \qquad

Place Value Through Millions

You can use a place-value chart to help you read and write numbers through millions.
You can group the digits in a whole number into sections called periods.
Each period has 3 digits.
Each digit in a whole number has both a place and a value. In the place value chart below, the digit 3 is in the hundred thousands place. So its value is $3 \times 100,000$, or 300,000.

Periods									
	Millions	Thousands				Ones			
Hundred Millions	Ten Millions	Millions	Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Ones	
2	8	7	3	1	4	6	5	9	

Use the place-value chart to read and write the number in standard form, word form, and expanded form.

Standard Form: 287,314,659
Word Form: two hundred eighty-seven million, three
hundred fourteen thousand, six hundred fifty-nine
Expanded Form: 200,000,000 $+80,000,000+7,000,000+$
$300,000+10,000+4,000+600+50+9$

Read and write the number in two other forms.

1. sixty million, forty thousand, two hundred twenty-nine
2. $8,000,000+300,000+2,000+$
$100+8$

Decimals and Place Value

You can write decimals, like whole numbers, in standard form, word form, and expanded form.

In a place-value chart, whole numbers are to the left of the decimal point. Decimal amounts are to the right of the decimal point.
The value of each place is one-tenth, or $\frac{1}{10}$, of the place to its left.
When you write a decimal in word form, write the decimal point as "and."
Write the decimal 12.34 in word form and expanded form.
Start by writing 12.34 in a place-value chart. First, align the decimal point with the decimal in the chart. Then place the digits.

Hundreds	Tens	Ones	\cdot	Tenths	Hundredths
	1	2	.	3	4
	1×10	$\underline{2} \times 1$.	$\frac{3}{2} \times \frac{1}{10}$	$\frac{4}{4} \times \frac{1}{100}$
	10	2	.	$\frac{3}{10}$	$\frac{4}{100}$

Word form: $12.34 \longleftarrow$ Two decimals indicate hundredths.
Twelve
and thirty-four \qquad
hundredths

Expanded Form: Use the last row of the chart to help you write the decimal in expanded form.
$12.34=10+\underline{2}+\underline{0.3}+0.04$

Read and write the decimal in two other forms.

1. eight and seven tenths
2. $10+3+0.9+0.05$

Place Value to Compare Decimals

You can use a place-value chart to help you compare decimals.
Use a place-value chart to compare the decimals. Write $<,>$, or $=$.

4.284 .23

Step 1 Write both decimals in a place-value chart. Line up each place and the decimal.

Step 2 Compare the numbers in each place, starting with the numbers in the ones place and working your way right.

Ones	\cdot	Tenths	Hundredths
4	\cdot	2	8
4	\cdot	2	3
$4=4$	$2=\underline{2}$	$8>\underline{3}$	

Step 3 Since 8 is greater than 3, 4.28 is greater than 4.23.
So, $4.28>4.23$.

1. Use the place-value chart below to compare the decimals.

Write $<,>$, or $=$.

Ones	\cdot	Tenths	Hundredths
8	\cdot	9	2
8	\cdot	9	7

$8=8$
$9=$ \qquad $2<$
So, $8.92<8.97$.
Compare the decimals. Write $<,>$, or $=$.
2. 6.87

3. 9.17

9.19
4. 5.735.78
5. 1.23
 1.22
6. 2.56
 2.5
7. 3.7
 3.70
8. 7.22
 7.2
9. 4.4
 4.04

Decompose Multiples of 10, 100, 1,000

You can decompose a multiple of 10,100 , or 1,000 by finding its factors.

- To decompose a multiple of 10 : rewrite it as the product of 10 and another number.
- To decompose a multiple of 100: rewrite it as the product of 100 and another number.
- To decompose a multiple of 1,000 : rewrite it as the product of 1,000 and another number.

Decompose 3,200.
One Way Use mental math and a pattern.
$3,200=\underline{3,200} \times 1$
$3,200=\underline{320} \times 10$
$3,200=\underline{32} \times 100$
So $3,200=32 \times 100$.
Another Way Use place value.
$3,200=32$ hundreds $=32 \times \underline{100}$
So $3,200=32 \times 100$.

1. Complete the exercise below to decompose 3,600 .
$3,600=$ \qquad $\times 1$
$3,600=$ \qquad $\times 10$
$3,600=$ \qquad $\times 100$
2. Complete the exercise below to decompose 870.
$870=$ \qquad tens $=$ \qquad \times \qquad

Decompose each number.
\qquad
3. $90=$
4. $5,600=$ \qquad 5. $3,000=$ \qquad

Number Patterns

You already know how to use a rule and the first term to write a sequence.
Now you will use multiplication to describe a pattern.
Stephen is saving his money to buy a car. The table shows how much money he has saved at the end of each month. If the pattern continues, how much money will Stephen have saved after months 5 and 6 ?

Number of Months	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Total Amount Saved (\$)	15	30	60	120

Step 1 Describe the sequence.
Think: How do I get from one term to the next?
Try multiplying by 2 , since $15 \times 2=30$.

Step 2 Write a rule that describes how much money Stephen has saved at the end of each month.

Rule: Multiply by 2.
Step 3 Use the rule to find the next two terms in the sequence.

So, at the end of month 5, Stephen will have saved $\$ 240$. At the end of month 6 , have will have saved $\$ 480$.

Describe the pattern. Then find the next two numbers in the pattern.

1. $2,10,50$, \qquad ,
2. $2,6,18$, \qquad , \qquad

Add Related Fractions

You can add fractions with different denominators using a number line.
First find an equivalent fraction so that both fractions have the same denominator.
Add $\frac{1}{4}+\frac{1}{2}$. Use a number line to help.
Step 1 Draw a number line from 0 to 1. Divide it into 4 equal parts. Label the number line in fourths.

Step 2 Draw another number line directly below the first number line. Line up the Os and 1s. Divide the second number line into 2 equal parts. Label it.

Step 3 Find how many fourths are equal to $\frac{1}{2}$.

$$
\frac{1}{2}=\frac{2}{4}
$$

Step 4 Add. Use the equivalent fraction for $\frac{1}{2}$.

$$
\begin{aligned}
\frac{1}{4}+\frac{1}{2} & =\frac{1}{4}+\frac{2}{4} \\
& =\frac{3}{4}
\end{aligned}
$$

So, $\frac{1}{4}+\frac{1}{2}=\frac{3}{4}$.

Add. Use a number line to help.

1. $\frac{3}{4}+\frac{1}{8}=$ \qquad
2. $\frac{1}{6}+\frac{2}{3}=$
3. $\frac{2}{5}+\frac{1}{10}=$ \qquad
4. $\frac{4}{8}+\frac{1}{2}=$ \qquad
5. $\frac{1}{2}+\frac{1}{6}=$ \qquad
6. $\frac{4}{12}+\frac{1}{4}=$ \qquad

Subtract Related Fractions

You can subtract fractions with different denominators using a number line.
First find an equivalent fraction so that both fractions have the same denominator.

Subtract $\frac{3}{4}-\frac{1}{8}$. Use a number line to help.

Step 1 Draw a number line from 0 to 1. Divide it into 4 equal parts. Label the number line in fourths.

Step 2 Draw another number line directly below the first number line. Line up the Os and 1s. Divide the second number line into 8 equal parts. Label it.

Step 3 Find how many eighths are equal to $\frac{3}{4}$.

$$
\frac{3}{4}=\frac{6}{8}
$$

Step 4 Add. Use the equivalent fraction for $\frac{3}{4}$.

$$
\begin{aligned}
\frac{3}{4}-\frac{1}{8} & =\frac{6}{8}-\frac{1}{8} \\
& =\frac{5}{8}
\end{aligned}
$$

So, $\frac{3}{4}-\frac{1}{8}=\frac{5}{8}$.

Subtract. Use a number line to help.

1. $\frac{5}{6}-\frac{1}{3}=$ \qquad
2. $\frac{1}{2}-\frac{1}{4}=$ \qquad
3. $\frac{5}{8}-\frac{1}{2}=$
\qquad
4. $\frac{6}{10}-\frac{2}{5}=$ \qquad
5. $\frac{7}{12}-\frac{1}{3}=$ \qquad 6. $\frac{6}{8}-\frac{3}{4}=$ \qquad

Compare Fraction Products

When a fraction less than one is multiplied by a whole number, is the product less than or greater than the fraction?

Is the product of $\frac{3}{4} \times 2$ less than or greater than $\frac{3}{4}$?
Step 1 Show two groups of $\frac{3}{4}$.

The model shows $\frac{6}{4}$ shaded.
Step 2 Compare. The product $\frac{6}{4}$ is greater than $\frac{3}{4}$.
So, the product of $\frac{3}{4} \times 2$ is greater than $\frac{3}{4}$.
When a whole number is multiplied by a fraction less than one, is the product less than or greater than the whole number?

Is the product of $3 \times \frac{3}{5}$ less than or greater than 3 ?
Step 1 Show three groups of $\frac{3}{5}$.

Step 2 Compare. The product $\frac{9}{5}$ is \qquad less than

The model shows $\frac{9}{5}$ shaded. 3.

So, the product of $3 \times \frac{3}{5}$ is less than 3 .

Complete each statement with greater than or less than.

1. $2 \times \frac{5}{6}$ will be \qquad $\frac{5}{6}$.
2. $\frac{3}{8} \times 2$ will be \qquad 2.
3. $3 \times \frac{2}{5}$ will be \qquad 3.
4. $\frac{2}{3} \times 4$ will be \qquad $\frac{2}{3}$.

Area and Tiling

In the model, whole tiles are shaded, and some half tiles are shaded. You can combine the areas of half tiles and whole tiles to find the total area.

Find the area of the entryway.
Write the area in square feet.

1 square $\mathbf{=} \mathbf{4}$ square feet
Step 2 Count the number of half tiles. There are 6 half tiles.

Think: 2 half tiles $=1$ whole tile 6 half tiles $=3$ whole tiles

Step 3 Use the total number of whole tiles to find the area.
$42+3=45$ whole tiles
Think: 1 tile $=4$ square feet
Multiply the number of whole tiles by 4 to find the area.
$45 \times 4=180$
So, the area of Marta's entryway is 180 square feet.

Find the area of each shaded shape. Write the area in square units.
1.

1 square $=4$ square feet
2.

1 square $=9$ square meters
3.

1 square = 16 square miles

Multiply Three Factors

Step 1

Simplify the problem. Rewrite $2 \times(14 \times 6)$ as a product of two factors.

$$
\begin{aligned}
2 \times(14 \times 6) & =2 \times(\underline{6} \times 14) \\
& =(2 \times \underline{6}) \times 14 \begin{array}{l}
\text { Commutative } \\
\text { Property }
\end{array} \\
& \begin{array}{l}
\text { Associative } \\
\text { Property }
\end{array} \\
& =\underline{12} \times 14
\end{aligned}
$$

So, $2 \times(14 \times 6)=12 \times 14$.

Step 2

Multiply.

Remember

Commutative Property of Multiplication
You can multiply factors in any order and still get the same product.
Example: $2 \times 3=3 \times 2$
Associative Property of Multiplication
You can group factors in any order and still get the same product.
Example:
$2 \times(3 \times 4)=(2 \times 3) \times 4$

12		
$\times 14$		
48	\longleftarrow	4×12
+120	\longleftarrow	10×12
168	\longleftarrow	Add.

So, $2 \times(14 \times 6)=168$.

Find each product.

1. $3 \times(16 \times 4)=$
2. $(4 \times 14) \times 6=$
3. $5 \times(13 \times 5)=$
4. $(16 \times 7) \times 3=$
5. $7 \times(18 \times 6)=$
6. $(12 \times 8) \times 6=$

Find Area of the Base

A rectangular prism is a solid figure that has three-dimensions: length, width, and height.
A rectangular prism has two bases. The bases are the same size and shape and are opposite each other. The base shape of a rectangular prism is a rectangle or a square.

You can use the area formulas for a rectangle and a square to find the area of the base of a rectangular prism.

Find the area of the base of the rectangular prism.
Step 1 Identify the base shape.
The length is 6 feet.
The width is \qquad 4 feet.

The base shape is a rectangle
Step 2 Find the area of the base shape.
$A=I \times w$ Think: Use the area formula for a rectangle.
$=\underline{6} \times \underline{4}$
$=\underline{24}$ square feet

Remember

Area of a rectangle:
$A=b \times h$ or $A=I \times w$
Area of a square:
$A=s \times s$

So, the area of the base is \qquad 24 square feet .

Find the area of the base of the rectangular prism.

1.

2.

3.

4.

5.

6.

